Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Commun ; 5(3): fcad143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37188221

RESUMO

Patients with multiple sclerosis consistently show widespread changes in functional connectivity. Yet, alterations are heterogeneous across studies, underscoring the complexity of functional reorganization in multiple sclerosis. Here, we aim to provide new insights by applying a time-resolved graph-analytical framework to identify a clinically relevant pattern of dynamic functional connectivity reconfigurations in multiple sclerosis. Resting-state data from 75 patients with multiple sclerosis (N = 75, female:male ratio of 3:2, median age: 42.0 ± 11.0 years, median disease duration: 6 ± 11.4 years) and 75 age- and sex-matched controls (N = 75, female:male ratio of 3:2, median age: 40.2 ± 11.8 years) were analysed using multilayer community detection. Local, resting-state functional system and global levels of dynamic functional connectivity reconfiguration were characterized using graph-theoretical measures including flexibility, promiscuity, cohesion, disjointedness and entropy. Moreover, we quantified hypo- and hyper-flexibility of brain regions and derived the flexibility reorganization index as a summary measure of whole-brain reorganization. Lastly, we explored the relationship between clinical disability and altered functional dynamics. Significant increases in global flexibility (t = 2.38, PFDR = 0.024), promiscuity (t = 1.94, PFDR = 0.038), entropy (t = 2.17, PFDR = 0.027) and cohesion (t = 2.45, PFDR = 0.024) were observed in patients and were driven by pericentral, limbic and subcortical regions. Importantly, these graph metrics were correlated with clinical disability such that greater reconfiguration dynamics tracked greater disability. Moreover, patients demonstrate a systematic shift in flexibility from sensorimotor areas to transmodal areas, with the most pronounced increases located in regions with generally low dynamics in controls. Together, these findings reveal a hyperflexible reorganization of brain activity in multiple sclerosis that clusters in pericentral, subcortical and limbic areas. This functional reorganization was linked to clinical disability, providing new evidence that alterations of multilayer temporal dynamics play a role in the manifestation of multiple sclerosis.

2.
Sci Adv ; 9(5): eabq3851, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36724223

RESUMO

The human brain operates in large-scale functional networks. These networks are an expression of temporally correlated activity across brain regions, but how global network properties relate to the neural dynamics of individual regions remains incompletely understood. Here, we show that the brain's network architecture is tightly linked to critical episodes of neural regularity, visible as spontaneous "complexity drops" in functional magnetic resonance imaging signals. These episodes closely explain functional connectivity strength between regions, subserve the propagation of neural activity patterns, and reflect interindividual differences in age and behavior. Furthermore, complexity drops define neural activity states that dynamically shape the connectivity strength, topological configuration, and hierarchy of brain networks and comprehensively explain known structure-function relationships within the brain. These findings delineate a principled complexity architecture of neural activity-a human "complexome" that underpins the brain's functional network organization.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Rede Nervosa
3.
Eur J Neurosci ; 57(3): 568-579, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36514280

RESUMO

Patients with anti-N-methyl-aspartate receptor (NMDA) receptor encephalitis suffer from a severe neuropsychiatric syndrome, yet most patients show no abnormalities in routine magnetic resonance imaging. In contrast, advanced neuroimaging studies have consistently identified disrupted functional connectivity in these patients, with recent work suggesting increased volatility of functional state dynamics. Here, we investigate these network dynamics through the spatiotemporal trajectory of meta-state transitions, yielding a time-resolved account of brain state exploration in anti-NMDA receptor encephalitis. To this end, resting-state functional magnetic resonance imaging data were acquired in 73 patients with anti-NMDA receptor encephalitis and 73 age- and sex-matched healthy controls. Time-resolved functional connectivity was clustered into brain meta-states, giving rise to a time-resolved transition network graph with states as nodes and transitions between brain meta-states as weighted, directed edges. Network topology, robustness and transition cost of these transition networks were compared between groups. Transition networks of patients showed significantly lower local efficiency (t = -2.41, pFDR  = .029), lower robustness (t = -2.01, pFDR  = .048) and higher leap size (t = 2.18, pFDR  = .037) compared with controls. Furthermore, the ratio of within-to-between module transitions and state similarity was significantly lower in patients. Importantly, alterations of brain state transitions correlated with disease severity. Together, these findings reveal systematic alterations of transition networks in patients, suggesting that anti-NMDA receptor encephalitis is characterized by reduced stability of brain state transitions and that this reduced resilience of transition networks plays a clinically relevant role in the manifestation of the disease.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Humanos , Encefalite Antirreceptor de N-Metil-D-Aspartato/diagnóstico por imagem , Encefalite Antirreceptor de N-Metil-D-Aspartato/patologia , Encéfalo , Receptores de N-Metil-D-Aspartato , Imageamento por Ressonância Magnética/métodos , Neuroimagem
4.
Neuroimage Clin ; 36: 103203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36179389

RESUMO

BACKGROUND & AIM: Multiple sclerosis (MS) is an autoimmune disease of the central nervous system associated with deficits in cognitive and motor functioning. While structural brain changes such as demyelination are an early hallmark of the disease, a characteristic profile of functional brain alterations in early MS is lacking. Functional neuroimaging studies at various disease stages have revealed complex and heterogeneous patterns of aberrant functional connectivity (FC) in MS, with previous studies largely being limited to a static account of FC. Thus, it remains unclear how time-resolved FC relates to variance in clinical disability status in early MS. We here aimed to characterize brain network organization in early MS patients with time-resolved FC analysis and to explore the relationship between disability status, multi-domain clinical outcomes and altered network dynamics. METHODS: Resting-state functional MRI (rs-fMRI) data were acquired from 101 MS patients and 101 age- and sex-matched healthy controls (HC). Based on the Expanded Disability Status Score (EDSS), patients were split into two sub-groups: patients without clinical disability (EDSS ≤ 1, n = 36) and patients with mild to moderate levels of disability (EDSS ≥ 2, n = 39). Five dynamic FC states were extracted from whole-brain rs-fMRI data. Group differences in static and dynamic FC strength, across-state overall connectivity, dwell time, transition frequency, modularity, and global connectivity were assessed. Patients' impairment was quantified as custom clinical outcome z-scores (higher: worse) for the domains depressive symptoms, fatigue, motor, vision, cognition, total brain atrophy, and lesion load. Correlation analyses between functional measures and clinical outcomes were performed with Spearman partial correlation analyses controlling for age. RESULTS: Patients with mild to moderate levels of disability exhibited a more widespread spatiotemporal pattern of altered FC and spent more time in a high-connectivity, low-occurrence state compared to patients without disability and HCs. Worse symptoms in all clinical outcome domains were positively associated with EDSS scores. Furthermore, depressive symptom severity was positively related to functional dynamics as measured by state-specific global connectivity and default mode network connectivity with attention networks, while fatigue and motor impairment were related to reduced frontoparietal network connectivity with the basal ganglia. CONCLUSIONS: Despite comparably low impairment levels in early MS, we identified distinct connectivity alterations between patients with mild to moderate disability and those without disability, and these changes were sensitive to clinical outcomes in multiple domains. Furthermore, time-resolved analysis uncovered alterations in network dynamics and clinical correlations that remained undetected with conventional static analyses, showing that accounting for temporal dynamics helps disentangle the relationship between functional alterations, disability status, and symptoms in early MS.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla Recidivante-Remitente/complicações , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Mapeamento Encefálico/métodos , Esclerose Múltipla/patologia , Vias Neurais , Imageamento por Ressonância Magnética/métodos , Encéfalo , Fadiga/diagnóstico por imagem , Fadiga/etiologia
5.
Brain Commun ; 4(1): fcab298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35169701

RESUMO

Traditional static functional connectivity analyses have shown distinct functional network alterations in patients with anti-N-methyl-d-aspartate receptor encephalitis. Here, we use a dynamic functional connectivity approach that increases the temporal resolution of connectivity analyses from minutes to seconds. We hereby explore the spatiotemporal variability of large-scale brain network activity in anti-N-methyl-d-aspartate receptor encephalitis and assess the discriminatory power of functional brain states in a supervised classification approach. We included resting-state functional magnetic resonance imaging data from 57 patients and 61 controls to extract four discrete connectivity states and assess state-wise group differences in functional connectivity, dwell time, transition frequency, fraction time and occurrence rate. Additionally, for each state, logistic regression models with embedded feature selection were trained to predict group status in a leave-one-out cross-validation scheme. Compared to controls, patients exhibited diverging dynamic functional connectivity patterns in three out of four states mainly encompassing the default-mode network and frontal areas. This was accompanied by a characteristic shift in the dwell time pattern and higher volatility of state transitions in patients. Moreover, dynamic functional connectivity measures were associated with disease severity and positive and negative schizophrenia-like symptoms. Predictive power was highest in dynamic functional connectivity models and outperformed static analyses, reaching up to 78.6% classification accuracy. By applying time-resolved analyses, we disentangle state-specific functional connectivity impairments and characteristic changes in temporal dynamics not detected in static analyses, offering new perspectives on the functional reorganization underlying anti-N-methyl-d-aspartate receptor encephalitis. Finally, the correlation of dynamic functional connectivity measures with disease symptoms and severity demonstrates a clinical relevance of spatiotemporal connectivity dynamics in anti-N-methyl-d-aspartate receptor encephalitis.

6.
Psychol Med ; 49(9): 1555-1564, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30149815

RESUMO

BACKGROUND: Gray matter (GM) 'pseudoatrophy' is well-documented in patients with anorexia nervosa (AN), but changes in white matter (WM) are less well understood. Here we investigated the dynamics of microstructural WM brain changes in AN patients during short-term weight restoration in a combined longitudinal and cross-sectional study design. METHODS: Diffusion-weighted images were acquired in young AN patients before (acAN-Tp1, n = 56) and after (acAN-Tp2, n = 44) short-term weight restoration as well as in age-matched healthy controls (HC, n = 60). Images were processed using Tract-Based-Spatial-Statistics to compare fractional anisotropy (FA) across groups and timepoints. RESULTS: In the cross-sectional comparison, FA was significantly reduced in the callosal body in acAN-Tp1 compared with HC, while no differences were found between acAN-Tp2 and HC. In the longitudinal arm, FA increased with weight gain in acAN-Tp2 relative to acAN-Tp1 in large parts of the callosal body and the fornix, while it decreased in the right corticospinal tract. CONCLUSIONS: Our findings reveal that dynamic, bidirectional changes in WM microstructure in young underweight patients with AN can be reversed with brief weight restoration therapy. These results parallel those previously observed in GM and suggest that alterations in WM in non-chronic AN are also state-dependent and rapidly reversible with successful intervention.


Assuntos
Anorexia Nervosa/patologia , Anorexia Nervosa/terapia , Corpo Caloso/patologia , Magreza/patologia , Magreza/terapia , Aumento de Peso , Substância Branca/patologia , Adolescente , Adulto , Anorexia Nervosa/diagnóstico por imagem , Criança , Corpo Caloso/diagnóstico por imagem , Estudos Transversais , Imagem de Tensor de Difusão , Feminino , Humanos , Estudos Longitudinais , Reabilitação Psiquiátrica , Magreza/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...